Image Guided Radiation Therapy (IGRT)

Home » Chalmers Cancer Treatment Center » Pioneering Work » Cancer » Cancer Services / Treatment Options » Image Guided Radiation Therapy (IGRT)

Image-guided radiation therapy (IGRT) is the use of imaging during radiation therapy to improve the precision and accuracy of treatment delivery. IGRT is used to treat tumors in areas of the body that move, such as the lungs. Radiation therapy machines are equipped with imaging technology to allow your doctor to image the tumor before and during treatment. By comparing these images to the reference images taken during simulation, the patient’s position and/or the radiation beams may be adjusted to more precisely target the radiation dose to the tumor. Some IGRT procedures may use fiducial markers, electromagnetic transponders or colored ink tattoos on the skin to help align and target the radiation equipment.

If you are to undergo IGRT, your doctor will likely use CT scanning to conduct a treatment simulation session. Other imaging procedures may be used to help determine the exact shape and location of your tumor, and a special device may be created to help you maintain the same exact position during each treatment. Your doctor will give you specific instructions based on the type of exam being performed.

What is Image-Guided Radiation Therapy and how is it used?

Image-guided radiation therapy (IGRT) is the use of frequent imaging during a course of radiation therapy for the purpose of improving the precision and accuracy of the delivery of treatment.

In IGRT, machines that deliver radiation, such as a linear accelerator (for x-ray or photon) or cyclotron/synchrotron (for proton), are equipped with special imaging technology that allow the physician to image the tumor immediately before or even during the time radiation is delivered, while the patient is positioned on the treatment table. Using specialized computer software, these images are then compared to the reference images taken during simulation. Any necessary adjustments are then made to the patient's position and/or radiation beams in order to more precisely target radiation at the tumor and avoid healthy surrounding tissue.

Computed tomography (CT), magnetic resonance imaging (MRI), ultrasound (US) and x-ray imaging may be used for IGRT by visualizing bony or soft-tissue anatomy. Other methods for IGRT use markers placed on the patient's body surface or implanted within the patient's body.

IGRT is used to treat tumors in areas of the body that are prone to movement, such as the lungs (affected by breathing), liver, and prostate gland, as well as tumors located close to critical organs and tissues. It is often used in conjunction with intensity-modulated radiation therapy (IMRT), proton beam therapy, stereotactic radiosurgery, or stereotactic body radiotherapy (SBRT), which are advanced modes of high-precision radiotherapy that utilize computer-controlled x-ray accelerators to deliver precise radiation doses to a malignant tumor or specific areas within the tumor.

Resources:

www.radiologyinfo.org